If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-18x-36=0
a = 6; b = -18; c = -36;
Δ = b2-4ac
Δ = -182-4·6·(-36)
Δ = 1188
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1188}=\sqrt{36*33}=\sqrt{36}*\sqrt{33}=6\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-6\sqrt{33}}{2*6}=\frac{18-6\sqrt{33}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+6\sqrt{33}}{2*6}=\frac{18+6\sqrt{33}}{12} $
| p^2-7=-11 | | -10-11k=166 | | 2x+5x-4=3(10x-4) | | 1=-a+5 | | 8×(8q+6)=72×8 | | -2x-4=15 | | (x-3)°=(8x+3)° | | 5x+50+25x+15-(98-47x)+25x-15=360 | | 12.5+x=30 | | x÷9+6=9 | | 16x+8=2(5x+8) | | z+110=373 | | -4(x-1)=4x | | 16x+8=2(3x+5) | | 3(x+9)+14=56 | | -2.75-3y=-7 | | g÷2=14 | | 4x+2=6(3x+5) | | 8q+6+6=72+6 | | 8x+2=4(5x+7)) | | 120=30y | | b+708=950 | | 25×a/4=100 | | 5(x+2=30 | | m+51=93 | | –3v+8=–2v | | 2x+3(×+4)=5x+12 | | n-16/21=(-1) | | 46=s+10 | | 6p+4=10+8p | | 2x+3(×+4)=5x+11 | | 4.8=x0.3 |